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1
The generalized projection of a periodic distribution g(x,y,2) is defined as ¢ So o(x,y,2z) exp [2niLlz]dz,

and can be expressed as a two-dimensional Fourier series. Two practical applications of this

function in X-ray analysis are described.

1. Generalized projection of a periodic
distribution

Corresponding to the electron density

1 .
ox, y,2) = 7}% F(hkl) exp [—2mt(ha+ky-+12)] (1)
we define the generalized projection of this distribution
on a plane perpendicular to the ¢ axis as

1
or(x, y) = GS olx, y, z) exp [2niLlz]dz . (2)
o
From (1), and the fact that

Sexp Rri(l—l)dz =1 it 1= L
=0ifl+L,
we obtain

02(0,9) =5 = FIRkL) exp [—2nitho+ )] . ()
This function was evaluated in the course of a crystal-
structure analysis previously reported (Clews &
Cochran, 1949), but its full significance was not realized
at that time, although some use was made of it.
Now with

F(hkL) = A(hkL)+iB(hkL)
and
QL(x, y) = CL(x: y)+iSL(x’ y) ’ (4)
we have from (3)
OL(x’ y) =
Z > A(hkL) cos 2n(hx+ky)+B(hkL) sin 2n(hx-+ky) ,
Bk
SL(z’ y) =
1 > B(hkL) cos 2 (hx+ky)—A(hkL) sin 2r(hx+ky) .
A )

* After this paper had been prepared for publication, an
unusual and very neat application of generalized projections
was reported by Raeuchle & Rundle (1952). These authors
derive equation (3), but the second of their equations corre-
sponding to our equations (5) appears to us to be incorrect.
Thereafter the applications of the theory are different in the
two papers; we have therefore submitted our paper without
altering its form.

These functions assume simpler forms when the struc-
ture possesses symmetry. For example, for space group
Pmmm,

Cilz,y) = =7 2 F(hkL) cos 2mhx cos 2nky ,
Bk
and Sz, y)=0. (6)

We now make use of the fact that when the distribution
is composed of spherically symmetric atoms,

F(hkL) = Z f, (hkL) exp [27i(ha;+ky;+-L2;)] . (7)
Substituting i 1n (3) and using (4) we obtain

Oz, y) = 2 o;1(x—;, y—y;) cos 2nLz;
i=1
and
N -
Sylz, y) = _ZiGjL(x—x,-, y—y;) sin 2xlz; , (8)
7=
where
1 .
o;r(r, y) = Z% fi(hkL) exp [—2mi(hx+ky)] . (9)

We see from (8) that Ci(x,y) may be built up by
multiplying each o;.(x,y) by the factor cos 2nLz;,
and centering it at the point (z; y;). Since o;,(2, ¥)
is circularly symmetric, it can be evaluated from the
one-dimensional series

0’7‘1,(93, 0)

= ;1 S {Zf{hkL)} cos 2mhx .  (10)
bk

2. Use of generalized projections in crystal-
structure analysis

It often happens in practice that one projection of a
crystal structure, say down the ¢ axis, shows all
atoms well resolved from one another. When this is
the case, it is probable that the ¢ axis is relatively
short, and poor resolution will be obtained in all other
projections. In such circumstances the functions
Ci(x,y) and Sy(x, y) are valuable, as they possess the
resolution of the ¢ axis projection, but at the same
time contain information about the atomic z co-
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ordinates. Although they do not give this with the
same degree of accuracy as a three-dimensional
synthesis, fewer experimental data are required, the
necessary coefficients all being obtainable from a set
of Weissenberg photographs of a single layer line.
Approximate phases must of course be determined
from the known position of a heavy atom, or by
calculation from a trial structure. Generalized pro-
jections can be refined in the same way as ordinary
projections, the variables now being not the co-
ordinates of the maxima (or minima), which we
agsume to have been determined from the corre-
sponding projection, but their heights. From their
heights in the final generalised projections,; the values
of zlorf 2nlz; can be determined.

Corresponding generalized Patterson projections
may be useful in special circumstances (see for example
Dyer, 1951a).

Generalized projections were found to be parti-
cularly useful in an investigation of the crystal
structures of the compounds diglycylglycine ethyl ester
hydrochloride and the corresponding hydrobromide
(Dyer, 1951b). The compounds are closely isomorphous,
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Fig. 1. Electron density in diglycylglycine ethyl ester
hydrobromide, projected on (100).
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Fig. 2. Corresponding generalized projection for H = 1.
Negative values of the function are indicated by broken
contours,

the space group being Pcab. The projection of the
electron density on (100), shown in Fig. 1, was ob-
tained by the isomorphous-replacement method. In
this projection the ¢ axis is halved. Two molecules
related by a glide plane at y = }, which appears as
a line of symmetry in the projection, overlap and
at first, of course, there was no way of telling which
atom belonged to which molecule. The projection of
the stracture on (010) does not resolve this ambiguity,
and in any case this projection could not be obtained
by the isomorphous-replacement method because of
the particular position (on z = 0) occupied by the
replaceable atom. These difficulties were overcome by
evaluating the function C,(y, z). Since the space group
has a centre of symmetry, we have from (5)

+00 +00

Cily, z) = 1—2— 2> 2 F(1kl) cos 2n(ky+1z) .

k=—00 l=—0c0

(11)

From the relations between F(1kl), F(1kl) etc. which
are given by Lonsdale (1936) for this space group,
we find
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Cily, z) = % {2 S F(10l) cos 2nlz
=1

oo 0o

+4 ' Y F(1kl) cos 2nky cos 2nlz} F even, Lodd
k=1 I=1
- % { 42 ZF(IICZ) sin2nkysin2nlz}kodd, 1 odd » (12)
k=1 l=1

The signs of F(1kl)’s for I odd were determined by the
isomorphous-replacement method, and C,(y, z) was
evaluated for the bromine compound. The result is
shown in Fig. 2. The lines of symmetry at y = }
and £ in Fig. 1 appear as lines of antisymmetry in
Fig. 2. This follows from the fact that two atoms
related by a glide plane at y = } have coordinates
(%, ¥, z) and (x+%, $—y, 2), so that the heights of the
corresponding peaks in Fig. 2 depend on cos 27z and
cos 27(x+3); that is, they are equal in magnitude but
opposite in sign. Two adjacent atoms p and ¢ be-
longing to the same molecule will not differ greatly
in their x coordinates, so that cos 2nx, and cos 27z,
will have the same sign, unless p and ¢ lie on opposite
sides of x = } or . Adjacent peaks in Fig. 2 which
are both positive or both negative therefore usually
represent atoms belonging to the same molecule. In
this way it was proved that the atoms of one molecule
are as shown in Fig. 2. Approximate x coordinates
were obtained from the heights of the peaks in Fig.2,
and more accurately by inspection of the function
C,(y, z). Finally, the signs of the (h0l) structure factors
were calculated, using the # coordinates obtained from
the generalised projections, and the projection on
(010) was evaluated.

3. Application of generalized projections to the
calculation of structure factors

As an example, we consider a structure of symmetry
Pmmm. Then, from (6),

303
F(EL) = 44 S S C (=, y) cos 2nha cos 2rky dady .

o Jo (13)

Corresponding expressions for 4(kkL) and B(hkL) can
be derived from (5) in the general case.

Now it may be shown that under certain conditions,
which are fully explained in a paper by Sayre (1951),
anintegral such as (13) can be replaced by a summation,
so that

nh mk
27— cos 2 —.
COoSs J'[N COS 27T i

(14)

4 M
FkL) = 5 3 o, (2, ™
N N M

n=0 m=0

The practical steps in the use of this result are as
follows:

APPLICATIONS OF GENERALIZED CRYSTAL-STRUCTURE PROJECTIONS

(a) The functions g;; are calculated from (10) for
each type of atom and for as many different values
of L as are required. This is apt to be tedious; a
considerable simplification results if the structure
contains identical or similar (e.g. C, N and O) atoms.
The scattering factor, multiplied by an appropriate
temperature factor which is chosen so as to fulfill the
conditions whereby (13) may be replaced by (14),
can then be approximated by

[ilhkL)=2; exp [—(n?|p)S?],
from which (Booth, 1946)

where S=2sin 0/1,

0o(r) = Z,(p[n) exp [—pr?],

where r is a distance measured from the origin, and
hence

0;1(r) = 0j(r) exp [—n2L?|pc*] ,
since f;(hkL) = f;(hk0) exp [—n2L%[pc?] in this case.

o;, is then the same, apart from scale, for all atoms
and for all values of L.

(b) The functions g;; are then multiplied by the
appropriate values of cos 2nLz;, centered at the points
(%;, ), and ‘sampled’ on a lattice of spacing a/N, b/M
to give the coefficients C(n/N, m|M).

(c) The two-dimensional series is evaluated to give
the F(hkL)’s.

By the use of this technique, a machine for the
calculation of a two-dimensional series can be used to
calculate general (hkl) structure factors. The method
has been satisfactorily applied in practice, using
punched-card equipment and on another occasion the
electronic computer X-RAC (Pepinsky, 1947).

Part of this work was completed while one author
(W.C.) was working in the laboratory of Prof. R.
Pepinsky, and this author wishes to express his
appreciation of the facilities and hospitality extended
to him by Prof. Pepinsky. The other author (H.B.D.)
is indebted to the University of South Africa for the
award of a Croll Research Scholarship, and to the
Rockefeller Foundation for financial support.
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